Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD | BMC Medicine

Spread the love

  • Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313:2263–73.

    CAS 
    PubMed 

    Google Scholar 

  • Wong VW-S, Adams LA, de Lédinghen V, Wong GL-H, Sookoian S. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15:461–78.

    CAS 
    PubMed 

    Google Scholar 

  • Rosato V, Masarone M, Dallio M, Federico A, Aglitti A, Persico M. NAFLD and extra-hepatic comorbidities: current evidence on a multi-organ metabolic syndrome. Int J Environ Res Public Health. 2019;16:3415.

    CAS 
    PubMed Central 

    Google Scholar 

  • Jung DH, Shim JY, Lee HR, Moon BS, Park BJ, Lee YJ. Relationship between non-alcoholic fatty liver disease and pulmonary function. Intern Med J. 2012;42:541–6.

    CAS 
    PubMed 

    Google Scholar 

  • Peng T-C, Kao T-W, Wu L-W, Chen Y-J, Chang Y-W, Wang C-C, et al. Association between pulmonary function and nonalcoholic fatty liver disease in the NHANES III study. Medicine. 2015;94(21):e907.

  • Jullian-Desayes I, Trzepizur W, Boursier J, Joyeux-Faure M, Bailly S, Benmerad M, et al. Obstructive sleep apnea, chronic obstructive pulmonary disease and NAFLD: an individual participant data meta-analysis. Sleep Med. 2021;77:357–64.

    PubMed 

    Google Scholar 

  • Moon SW, Kim SY, Jung JY, Kang YA, Park MS, Kim YS, et al. Relationship between obstructive lung disease and non-alcoholic fatty liver disease in the Korean population: Korea National Health and Nutrition Examination Survey, 2007–2010. Int J Chron Obstruct Pulmon Dis. 2018;13:2603.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoeper MM, Krowka MJ, Strassburg CP. Portopulmonary hypertension and hepatopulmonary syndrome. Lancet. 2004;363:1461–8.

    PubMed 

    Google Scholar 

  • Botello-Manilla AE, López-Sánchez GN, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N. Hepatic steatosis and respiratory diseases a new panorama. Ann Hepatol. 2021;24:100320.

  • Katsarou A, Moustakas II, Pyrina I, Lembessis P, Koutsilieris M, Chatzigeorgiou A. Metabolic inflammation as an instigator of fibrosis during non-alcoholic fatty liver disease. World J Gastroenterol. 2020;26:1993.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saito A, Horie M, Nagase T. TGF-β signaling in lung health and disease. Int J Mol Sci. 2018;19:2460.

    PubMed Central 

    Google Scholar 

  • Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–9.

    CAS 
    PubMed 

    Google Scholar 

  • Thyagarajan B, Jacobs DR, Smith LJ, Kalhan R, Gross MD, Sood A. Serum adiponectin is positively associated with lung function in young adults, independent of obesity: the CARDIA study. Respir Res. 2010;11:1–8.

    Google Scholar 

  • Wu YC, Chuang PM, Pinotti R, Nagirimadugu A, Valentin N, Dinani A. The association of impaired lung function and nonalcoholic fatty liver disease: a systematic review. Eur J Gastroenterol Hepatol. 2021;33:745–51.

    CAS 
    PubMed 

    Google Scholar 

  • Missiroli S, Genovese I, Perrone M, Vezzani B, Vitto VA, Giorgi C. The role of mitochondria in inflammation: from cancer to neurodegenerative disorders. J Clin Med. 2020;9:740.

    CAS 
    PubMed Central 

    Google Scholar 

  • Spahr L, Negro F, Leandro G, Marinescu O, Goodman KJ, Rubbia-Brandt L, et al. Impaired hepatic mitochondrial oxidation using the 13C-methionine breath test in patients with macrovesicular steatosis and patients with cirrhosis. Med Sci Monit. 2003;9:CR6–CR11.

    CAS 
    PubMed 

    Google Scholar 

  • Afolabi PR, Scorletti E, Smith DE, Almehmadi AA, Calder PC, Byrne CD. The characterisation of hepatic mitochondrial function in patients with non-alcoholic fatty liver disease (NAFLD) using the 13C-ketoisocaproate breath test. J Breath Res. 2018;12:046002.

    CAS 
    PubMed 

    Google Scholar 

  • Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev. 2020;29(157):200165.

  • Abdelmalek MF. The clinical and economic burden of NAFLD: time to turn the tide. Nat Rev Gastroenterol Hepatol. 2016;13:685–6.

    PubMed 

    Google Scholar 

  • Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67:829–46.

    PubMed 

    Google Scholar 

  • Stewart KJ, Bacher AC, Turner K, Lim JG, Hees PS, Shapiro EP, et al. Exercise and risk factors associated with metabolic syndrome in older adults. Am J Prev Med. 2005;28:9–18.

    PubMed 

    Google Scholar 

  • Ostman C, Smart N, Morcos D, Duller A, Ridley W, Jewiss D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol. 2017;16:1–11.

    Google Scholar 

  • Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454:463–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxidative Med Cell Longev. 2017;2017:3165396.

  • Cho J, Kim S, Lee S, Kang H. Effect of training intensity on nonalcoholic fatty liver disease. Med Sci Sports Exerc. 2015;47:1624–34.

    PubMed 

    Google Scholar 

  • Cho J, Koh Y, Han J, Kim D, Kim T, Kang H. Adiponectin mediates the additive effects of combining daily exercise with caloric restriction for treatment of non-alcoholic fatty liver. Int J Obes. 2016;40:1760–7.

    CAS 

    Google Scholar 

  • Schefer V, Talan MI. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp Gerontol. 1996;31:387–92.

    CAS 
    PubMed 

    Google Scholar 

  • Baynard T, Vieira-Potter VJ, Valentine RJ, Woods JA. Exercise training effects on inflammatory gene expression in white adipose tissue of young mice. Mediat Inflamm. 2012;2012:767953.

  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    PubMed 

    Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS 
    PubMed 

    Google Scholar 

  • Day PE, Chambers KF, Winterbone MS, García-Blanco T, Vauzour D, Kroon PA. Validation of control genes and a standardised protocol for quantifying gene expression in the livers of C57BL/6 and ApoE−/− mice. Sci Rep. 2018;8:1–8.

    CAS 

    Google Scholar 

  • Mehta A, Dobersch S, Dammann RH, Bellusci S, Ilinskaya ON, Braun T, et al. Validation of Tuba1a as appropriate internal control for normalization of gene expression analysis during mouse lung development. Int J Mol Sci. 2015;16:4492–511.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bueno M, Calyeca J, Rojas M, Mora AL. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol. 2020;33:101509.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Brit J Pharmacol. 2016;173:2305–18.

    CAS 

    Google Scholar 

  • Lundblad LK, Thompson-Figueroa J, Leclair T, Sullivan MJ, Poynter ME, Irvin CG, et al. Tumor necrosis factor–α overexpression in lung disease: a single cause behind a complex phenotype. Am J Resp Crit Care. 2005;171:1363–70.

    Google Scholar 

  • Piguet P, Ribaux C, Karpuz V, Grau G, Kapanci Y. Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am J Pathol. 1993;143:651.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keatings VM, O’Connor BJ, Wright LG, Huston DP, Corrigan CJ, Barnes PJ. Late response to allergen is associated with increased concentrations of tumor necrosis factor-α and IL-5 in induced sputum. J Allergy Clin Immunol. 1997;99:693–8.

    CAS 
    PubMed 

    Google Scholar 

  • Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Resp Crit Care. 1996;153:530–4.

    CAS 

    Google Scholar 

  • Viglino D, Jullian-Desayes I, Minoves M, Aron-Wisnewsky J, Leroy V, Zarski J-P, et al. Nonalcoholic fatty liver disease in chronic obstructive pulmonary disease. Eur Respir J. 2017;49(6):1601923.

  • Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Resp Cell Mol. 2005;32:311–8.

    CAS 

    Google Scholar 

  • Younas H, Vieira M, Gu C, Lee R, Shin M-k, Berger S, et al. Caloric restriction prevents the development of airway hyperresponsiveness in mice on a high fat diet. Sci Rep. 2019;9:1–9.

    CAS 

    Google Scholar 

  • Naura AS, Hans CP, Zerfaoui M, Errami Y, Ju J, Kim H, et al. High-fat diet induces lung remodeling in ApoE-deficient mice: an association with an increase in circulatory and lung inflammatory factors. Lab Investig. 2009;89:1243–51.

    CAS 
    PubMed 

    Google Scholar 

  • Nee LE, Mcmorrow T, Campbell E, Slattery C, Ryan MP. TNF-α and IL-1β–mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney Int. 2004;66:1376–86.

    CAS 
    PubMed 

    Google Scholar 

  • Robert S, Gicquel T, Bodin A, Lagente V, Boichot E. Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells. PLoS One. 2016;11:e0153118.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Jarrah MD, Erekat NS. Treadmill exercise training could attenuate the upregulation of interleukin-1 beta and tumor necrosis factor alpha in the skeletal muscle of mouse model of chronic/progressive Parkinson disease. NeuroRehabilitation. 2018;43:501–7.

    PubMed 

    Google Scholar 

  • Larsen AI, Aukrust P, Aarsland T, Dickstein K. Effect of aerobic exercise training on plasma levels of tumor necrosis factor alpha in patients with heart failure. Am J Cardiol. 2001;88:805–8.

    CAS 
    PubMed 

    Google Scholar 

  • Cogswell JP, Godlevski MM, Wisely G, Clay WC, Leesnitzer LM, Ways JP, et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol. 1994;153:712–23.

    CAS 
    PubMed 

    Google Scholar 

  • Liu H, Sidiropoulos P, Song G, Pagliari LJ, Birrer MJ, Stein B, et al. TNF-α gene expression in macrophages: regulation by NF-κB is independent of c-Jun or C/EBPβ. J Immunol. 2000;164:4277–85.

    CAS 
    PubMed 

    Google Scholar 

  • Liu H-W, Chang S-J. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1α axis to attenuate muscle loss in diabetic db/db mice. Front Physiol. 2018;9:636.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishitani Y, Yamamoto K, Yoshida M, Azuma T, Kanazawa K, Hashimoto T, et al. Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors. 2013;39:522–33.

    CAS 
    PubMed 

    Google Scholar 

  • Fashi M, Agha-Alinejad H, Mahabadi HA, Rezaei B, Pakrad BB, Rezaei S. The effects of aerobic exercise on NF-κB and TNF-α in lung tissue of male rat. Novelty Biomed. 2015;3:131–4.

    CAS 

    Google Scholar 

  • Yu YB, Liao YW, Su KH, Chang TM, Shyue SK, Kou Y, et al. Prior exercise training alleviates the lung inflammation induced by subsequent exposure to environmental cigarette smoke. Acta Physiol. 2012;205:532–40.

    CAS 

    Google Scholar 

  • Du S-F, Yu Q, Chuan K, Ye C-L, He Z-J, Liu S-J, et al. In obese mice, exercise training increases 11β-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation. J Appl Physiol. 2017;123:717–27.

    CAS 
    PubMed 

    Google Scholar 

  • Vieira RP, Toledo AC, Silva LB, Almeida FM, Damaceno-Rodrigues NR, Caldini EG, et al. Anti-inflammatory effects of aerobic exercise in mice exposed to air pollution. Med Sci Sports Exerc. 2012;44:1227–34.

    CAS 
    PubMed 

    Google Scholar 

  • Xu X, Wan W, Powers AS, Li J, Ji LL, Lao S, et al. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. J Mol Cell Cardiol. 2008;44:114–22.

    CAS 
    PubMed 

    Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VA, Lee S-J, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release. Nat Immunol. 2011;12:222.

    CAS 
    PubMed 

    Google Scholar 

  • Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–84.

    CAS 
    PubMed 

    Google Scholar 

  • Murthy S, Ryan A, He C, Mallampalli RK, Carter AB. Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J Biol Chem. 2010;285:25062–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hegab AE, Ozaki M, Meligy FY, Kagawa S, Ishii M, Betsuyaku T. High fat diet activates adult mouse lung stem cells and accelerates several aging-induced effects. Stem Cell Res. 2018;33:25–35.

    CAS 
    PubMed 

    Google Scholar 

  • Kuwano K, Nakashima N, Inoshima I, Hagimoto N, Fujita M, Yoshimi M, et al. Oxidative stress in lung epithelial cells from patients with idiopathic interstitial pneumonias. Eur Respir J. 2003;21:232–40.

    CAS 
    PubMed 

    Google Scholar 

  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8:2003.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heo JW, No MH, Cho J, Choi Y, Cho EJ, Park DH, et al. Moderate aerobic exercise training ameliorates impairment of mitochondrial function and dynamics in skeletal muscle of high-fat diet-induced obese mice. FASEB J. 2021;35:e21340.

    CAS 
    PubMed 

    Google Scholar 

  • Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, et al. Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. J Physiol. 2005;567:349–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mrakic-Sposta S, Gussoni M, Porcelli S, Pugliese L, Pavei G, Bellistri G, et al. Training effects on ROS production determined by electron paramagnetic resonance in master swimmers. Oxidative Med Cell Longev. 2015;2015:804794.

  • Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372:315–20.

    CAS 
    PubMed 

    Google Scholar 

  • Zhang B, Li P, Li J, Liu X, Wu W. Effect of oxidative stress on diaphragm dysfunction and exercise intervention in chronic obstructive pulmonary disease. Front Physiol. 2021;12:684453.

  • Farhat F, Dupas J, Amérand A, Goanvec C, Feray A, Simon B, et al. Effect of exercise training on oxidative stress and mitochondrial function in rat heart and gastrocnemius muscle. Redox Rep. 2015;20:60–8.

    CAS 
    PubMed 

    Google Scholar 

  • Jarmuszkiewicz W, Dominiak K, Galganski L, Galganska H, Kicinska A, Majerczak J, et al. Lung mitochondria adaptation to endurance training in rats. Free Radical Bio Med. 2020;161:163–74.

    CAS 

    Google Scholar 

  • Sharma A, Ahmad S, Ahmad T, Ali S, Syed MA. Mitochondrial dynamics and mitophagy in lung disorders. Life Sci. 2021;284:119876.

    CAS 
    PubMed 

    Google Scholar