Exercise preconditioning improves electrocardiographic signs of myocardial ischemic/hypoxic injury and malignant arrhythmias occurring after exhaustive exercise in rats

Spread the love

  • Bernardo, B. C. et al. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: Current knowledge and emerging concepts. Physiol. Rev. 98(1), 419–475 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Thijssen, D. H. J. et al. Association of exercise preconditioning with immediate cardioprotection: A review. JAMA Cardiol. 3(2), 169–176 (2018).

    PubMed 

    Google Scholar 

  • Domenech, R. et al. Exercise induces early and late myocardial preconditioning in dogs. Cardiovasc. Res. 55(3), 561–566 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Li, J. Y. et al. Changes in autophagy levels in rat myocardium during exercise preconditioning-initiated cardioprotective effects. Int. Heart J. 60(2), 419–428 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Parra, V. M., Macho, P. & Domenech, R. J. Late cardiac preconditioning by exercise in dogs is mediated by mitochondrial potassium channels. J. Cardiovasc. Pharmacol. 56(3), 268–274 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Kavazis, A. N. Exercise preconditioning of the myocardium. Sports Med. 39(11), 923–935 (2009).

    PubMed 

    Google Scholar 

  • Parra, V. M. et al. Exercise preconditioning of myocardial infarct size in dogs is triggered by calcium. J. Cardiovasc. Pharmacol. 65(3), 276–281 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yamashita, N. et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J. Exp. Med. 189(11), 1699–1706 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lennon, S. L. et al. Loss of exercise-induced cardioprotection after cessation of exercise. J. Appl. Physiol. (1985) 96(4), 1299–1305 (2004).

    Google Scholar 

  • Hao, Z. et al. Exercise preconditioning-induced early and late phase of cardioprotection is associated with protein kinase C epsilon translocation. Circ. J. 78(7), 1636–1645 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Shen, Y. J. et al. Exercise preconditioning provides early cardioprotection against exhaustive exercise in rats: Potential involvement of protein kinase C delta translocation. Mol. Cell. Biochem. 368, 89–102 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, J. et al. Alterations of cardiac K channels and autophagy contribute in the late cardioprotective phase of exercise preconditioning. Int. Heart J. 59(5), 1106–1115 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Yuan, J. Q. et al. Altered expression levels of autophagy-associated proteins during exercise preconditioning indicate the involvement of autophagy in cardioprotection against exercise-induced myocardial injury. J. Physiol. Sci. 70(1), 10 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, M. et al. Automated detection of hypertension using physiological signals: A review. Int. J. Environ. Res. Public Health 18(11), 5838 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rautaharju, P. M. et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part IV: The ST segment, T and U waves, and the QT interval: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation 119(10), e241-250 (2009).

    PubMed 

    Google Scholar 

  • Youssef, M. E. et al. α7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur. J. Pharmacol. 898, 173996 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Luurila, O. J. et al. Arrhythmias and ST segment deviation during prolonged exhaustive exercise (ski marathon) in healthy middle-aged men. Eur. Heart J. 15(4), 507–513 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Benito, B. et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123(1), 13-U61 (2011).

    PubMed 

    Google Scholar 

  • Lambiase, P. D. et al. Exercise-induced ischemia initiates the second window of protection in humans independent of collateral recruitment. J. Am. Coll. Cardiol. 41(7), 1174–1182 (2003).

    PubMed 

    Google Scholar 

  • van de Vegte, Y. J. et al. Genetics and the heart rate response to exercise. Cell Mol. Life Sci. 76(12), 2391–2409 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, Y. et al. Study on the time-effectiveness of exercise preconditioning on heart protection in exhausted rats. Chin. J. Physiol. 64(2), 97–105 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, Y. et al. Comparison of myocardial ischemic/hypoxic staining techniques for evaluating the alleviation of exhaustive exercise-induced myocardial injury by exercise preconditioning. J. Mol. Histol. 52(2), 373–383 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shepherd, R. E. & Gollnick, P. D. Oxygen uptake of rats at different work intensities. Pflugers Arch. 362(3), 219–222 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • Wan, D. F. et al. Exercise preconditioning promotes autophagy to cooperate for cardioprotection by increasing LC3 lipidation-associated proteins. Front. Physiol. 12, 599892 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Latorre-Román, P. Á. et al. A new approach for evaluation of cardiovascular fitness and cardiac responses to maximal exercise test in master runners: A cross-sectional study. J. Clin. Med. 11(6), 1648 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ekelund, U. et al. Heart rate as an indicator of the intensity of physical activity in human adolescents. Eur. J. Appl. Physiol. 85, 244–249 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Mier, C. M. et al. Cardiovascular adaptations to 10 days of cycle exercise. J. Appl. Physiol. (1985) 83(6), 1900–1906 (1997).

    CAS 

    Google Scholar 

  • Coote, J. H. Recovery of heart rate following intense dynamic exercise. Exp. Physiol. 95(3), 431–440 (2010).

    PubMed 

    Google Scholar 

  • Altimiras, J. & Axelsson, M. Intrinsic autoregulation of cardiac output in rainbow trout (Oncorhynchus mykiss) at different heart rates. J. Exp. Biol. 207, 195–201 (2004).

    PubMed 

    Google Scholar 

  • Xu, J. & Li, Y. Effects of salidroside on exhaustive exercise-induced oxidative stress in rats. Mol. Med. Rep. 6(5), 1195–1198 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. Different intensity exercise preconditions affect cardiac function of exhausted rats through regulating TXNIP/TRX/NF-kBp65/NLRP3 inflammatory pathways. Evid. Based Complement. Alternat. Med. 2020, 5809298 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hopkins, M. G., Spina, R. J. & Ehsani, A. A. Enhanced beta-adrenergic-mediated cardiovascular responses in endurance athletes. J. Appl. Physiol. (1985) 80(2), 516–521 (1996).

    CAS 

    Google Scholar 

  • Billman, G. E. et al. Exercise training-induced bradycardia: evidence for enhanced parasympathetic regulation without changes in intrinsic sinoatrial node function. J. Appl. Physiol. (1985) 118(11), 1344–1355 (2015).

    Google Scholar 

  • Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5), 1043–1065 (1996)

  • Lu, J. & Pan, S. S. Elevated C-type natriuretic peptide elicits exercise preconditioning-induced cardioprotection against myocardial injury probably via the up-regulation of NPR-B. J. Physiol. Sci. 67(4), 475–487 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Al-Rufaie, H. K., Florio, R. A. & Olsen, E. G. Comparison of the haematoxylin basic fuchsin picric acid method and the fluorescence of haematoxylin and eosin stained sections for the identification of early myocardial infarction. J. Clin. Pathol. 36(6), 646–649 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, Y. J. et al. Exercise preconditioning initiates late cardioprotection against isoproterenol-induced myocardial injury in rats independent of protein kinase C. J. Physiol. Sci. 61(1), 13–21 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Y., Pan, S. S. & Shen, Y. J. Cardioprotection of exercise preconditioning involving heat shock protein 70 and concurrent autophagy: A potential chaperone-assisted selective macroautophagy effect. J. Physiol. Sci. 68(1), 55–67 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Estes, N. A. et al. Electrical alternans during rest and exercise as predictors of vulnerability to ventricular arrhythmias. Am. J. Cardiol. 80(10), 1314–1318 (1997).

    PubMed 

    Google Scholar 

  • Verrier, R. L. et al. Microvolt T-wave alternans physiological basis, methods of measurement, and clinical utility–consensus guideline by International Society for Holter and Noninvasive Electrocardiology. J. Am. Coll. Cardiol. 58(13), 1309–1324 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nearing, B. D. & Verrier, R. L. Progressive increases in complexity of T-wave oscillations herald ischemia-induced ventricular fibrillation. Circ. Res. 91(8), 727–732 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Posa, A. et al. Cardioprotective effects of voluntary exercise in a rat model: role of matrix metalloproteinase-2. Oxid. Med. Cell. Longev. 2015, 876805 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, N. et al. Antioxidation role of different lateral stellate ganglion block in isoproterenol-induced acute myocardial ischemia in rats. Reg. Anesth. Pain Med. 42(5), 588–599 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z. G. et al. Inhibition of acid sensing ion channel by ligustrazine on angina model in rat. Am. J. Transl. Res. 7(10), 1798–1811 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guyton, R. A. Subendocardial S-T segment changes during acute coronary occlusion. Ann. Thorac. Surg. 20(1), 52–55 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Baxter, G. F. & Yellon, D. M. ATP-sensitive K+ channels mediate the delayed cardioprotective effect of adenosine A1 receptor activation. J Mol Cell Cardiol 31(5), 981–989 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Hao, Z. et al. Exercise preconditioning-induced late phase of cardioprotection against exhaustive exercise: possible role of protein kinase C delta. J Physiol Sci 64(5), 333–345 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Marijon, E. et al. Sports-related sudden death in the general population. Circulation 124(6), 672–681 (2011).

    PubMed 

    Google Scholar 

  • Albert, C. M. et al. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med 343(19), 1355–1361 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Maron, B. J. et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 119(8), 1085–1092 (2009).

    PubMed 

    Google Scholar 

  • Benoit, S. R. et al. Risk factors for prolonged QTc among US adults: Third National Health and Nutrition Examination Survey. Eur. J. Cardiovasc. Prev. Rehabil. 12(4), 363–368 (2005).

    PubMed 

    Google Scholar 

  • Kmecova, J. & Klimas, J. Heart rate correction of the QT duration in rats. Eur. J. Pharmacol. 641(2–3), 187–192 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Scherr, J. et al. Repolarization perturbation and hypomagnesemia after extreme exercise. Med. Sci. Sports Exerc. 44(9), 1637–1643 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Nie, J. et al. QTc interval prolongation during recovery from brief high-intensity intermittent exercise in obese adults. Herz 45, 67–71 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Morand, J. et al. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci. Rep. 8(1), 2997 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar