Cultivating epizoic diatoms provides insights into the evolution and ecology of both epibionts and hosts

Spread the love

  • Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: Applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 1–8 (2017).

    Google Scholar 

  • Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 2018–2448 (2019).

    Google Scholar 

  • Bennett, A. G. On the occurrence of diatoms on the skin of whales. Proc. R. Soc. Lond. B 91, 352–357 (1920).

    ADS 

    Google Scholar 

  • Denys, L. Morphology and taxonomy of epizoic diatoms (Epiphalaina and Tursiocola) on a sperm whale (Physeter macrocephalus) stranded on the coast of Belgium. Diatom. Res. 12, 1–18 (1997).

    Google Scholar 

  • Majewska, R. Tursiocola neliana sp. nov (Bacillariophyceae) epizoic on South African leatherback sea turtles (Dermochelys coriacea) and new observations on the genus Tursiocola. Phytotaxa 453, 1–15 (2020).

    Google Scholar 

  • Majewska, R. et al. Chelonicola and Poulinea, two new gomphonemoid genera living on marine turtles from Costa Rica. Phytotaxa 233, 236–250 (2015).

    Google Scholar 

  • Majewska, R. et al. Shared epizoic taxa and differences in diatom community structure between green turtles (Chelonia mydas) from distant habitats. Microb Ecol. 74, 969–978 (2017).

    PubMed 

    Google Scholar 

  • Majewska, R. et al. Two new epizoic Achnanthes species (Bacillariophyta) living on marine turtles from Costa Rica. Bot. Mar. 60, 303–318 (2017).

    Google Scholar 

  • Majewska, R., De Stefano, M. & Van de Vijver, B. Labellicula lecohuiana, a new epizoic diatom species living on green turtles in Costa Rica. Nova Hedwig Beih. 146, 23–31 (2018).

    Google Scholar 

  • Majewska, R. et al. Craspedostauros alatus sp. nov., a new diatom (Bacillariophyta) species found on museum sea turtle specimens. Diatom Res. 33, 229–240 (2018).

    Google Scholar 

  • Majewska, R. et al. Six new epibiotic Proschkinia (Bacillariophyta) species and new insights into the genus phylogeny. Eur. J. Phycol. 54, 609–631 (2019).

    Google Scholar 

  • Majewska, R., Robert, K., Van de Vijver, B. & Nel, R. A new species of Lucanicum (Cyclophorales, Bacillariophyta) associated with loggerhead sea turtles from South Africa. Bot. Lett. 167, 7–14 (2020).

    Google Scholar 

  • Frankovich, T. A., Sullivan, M. J. & Stacy, N. I. Tursiocola denysii sp. Nov. (Bacillariophyta) from the neck skin of Loggerhead sea turtles (Caretta caretta). Phytotaxa 234, 227–236 (2015).

    Google Scholar 

  • Frankovich, T. A., Ashworth, M. P., Sullivan, M. J., Vesela, J. & Stacy, N. I. Medlinella amphoroidea gen. et sp. Nov. (Bacillariophyta) from the neck skin of Loggerhead sea turtles (Caretta caretta). Phytotaxa 272, 101–114 (2016).

    Google Scholar 

  • Riaux-Gobin, C. et al. New epizoic diatom (Bacillariophyta) species from sea turtles in the Eastern Caribbean and South Pacific. Diatom Res. 32, 109–125 (2017).

    Google Scholar 

  • Riaux-Gobin, C., Witkowski, A., Chevallier, D. & Daniszewska-Kowalczyk, G. Two new Tursiocola species (Bacillariophyta) epizoic on green turtles (Chelonia mydas) in French Guiana and Eastern Caribbean. Fottea Olomouc 17, 150–163 (2017).

    Google Scholar 

  • Riaux-Gobin, C., Witkowski, A., Kociolek, J. P. & Chevallier, D. Navicula dermochelycola sp. Nov., presumably an exclusively epizoic diatom on sea turtles Dermochelys coriacea and Lepidochelys olivacea from French Guiana. Oceanol. Hydrobiol. Stud. 49, 132–139 (2020).

    CAS 

    Google Scholar 

  • Robert, K., Bosak, S. & Van de Vijver, B. Catenula exigua sp. nov., a new marine diatom (Bacillariophyta) species from the Adriatic Sea. Phytotaxa 414, 113–118 (2019).

    Google Scholar 

  • Van de Vijver, B. & Bosak, S. Planothidium kaetherobertianum, a new marine diatom (Bacillariophyta) species from the Adriatic Sea. Phytotaxa 425, 105–112 (2019).

    Google Scholar 

  • Robinson, N. J. et al. Epibiotic diatoms are universally present on all sea turtle species. PLoS ONE 11, e0157011 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van de Vijver, B. et al. Diversity of diatom communities (Bacillariophyta) associated with loggerhead sea turtles. PLoS ONE 15, e0236513 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Van de Vijver, B., Robert, K., Witkowski, A. & Bosak, S. Majewskaea gen. nov. (Bacillariophyta), a new marine benthic diatom genus from the Adriatic Sea. Fottea 20, 112–120 (2020).

    Google Scholar 

  • Majewska, R. Nagumoea hydrophicola sp. Nov. (Bacillariophyta), the first diatom species described from sea snakes. Diatom Res. 36, 49–59 (2021).

    Google Scholar 

  • Frankovich, T. A., Sullivan, M. J. & Stacey, N. I. Three new species of Tursiocola (Bacillariophyta) from the skin of the West Indian manatee (Trichechus manatus). Phytotaxa 204, 33–48 (2015).

    Google Scholar 

  • Frankovich, T. A., Ashworth, M. P., Sullivan, M. J., Theriot, E. C. & Stacy, N. I. Epizoic and apochlorotic Tursiocola species (Bacillariophyta) from the skin of Florida manatees (Trichechus manatus latirostris). Protist 169, 539–568 (2018).

    PubMed 

    Google Scholar 

  • Azari, M. et al. Diatoms on sea turtles and floating debris in the Persian Gulf (Western Asia). Phycologia 59, 292–304 (2020).

    Google Scholar 

  • Majewska, R. & Goosen, W. E. For better, for worse: Manatee-associated Tursiocola (Bacillariophyta) remain faithful to their host. J. Phycol. 56, 1019–1027 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Smol, J. P. & Stoermer, E. F. The Diatoms: Applications for the Environmental and Earth Sciences (Cambridge University Press, 2010).

    Google Scholar 

  • Rivera, S. F. et al. DNA metabarcoding and microscopic analyses of sea turtles biofilms: Complementary to understand turtle behavior. PLoS ONE 13, e0195770 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Majewska, R. et al. On sea turtle-associated Craspedostauros with description of three novel species. J Phycol. 57, 199–208 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Holmes, R. W. The morphology of diatoms epizoic on cetaceans and their transfer from Cocconeis to two new genera, Bennettella and Epipellis. Br. Phycol. J. 20, 43–57 (1985).

    Google Scholar 

  • Woodworth, K. A., Frankovich, T. A. & Freshwater, D. W. Melanothamnus maniticola (Ceramiales, Rhodophyta): An epizoic species evolved for life on the West Indian Manatee. J. Phycol. 55, 1239–1245 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles (Academic Press, 2013).

    Google Scholar 

  • Pitman, L. R. et al. Skin in the game: Epidermal molt as a driver of long-distance migration in whales. Mar. Mamm. Sci. 36, 565–594 (2020).

    Google Scholar 

  • Pope, D. H. & Berger, L. R. Algal photosynthesis at increased hydrostatic pressure and constant pO2. Arch. Microbiol. 89, 321–325 (1973).

    CAS 

    Google Scholar 

  • Calcagno, V., Jarne, P., Loreau, M., Mouquet, N. & David, P. Diversity spurs diversification in ecological communities. Nat. Commun. 8, 15810 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, N. J. & Pfaller, J. B. Sea turtle epibiosis: Global patterns and knowledge gaps. Trends Evol. Ecol. 10, 844021 (2021).

    Google Scholar 

  • Conant, T. A., Dutton, P. H., Eguchi, T., Epperly, S. P., Fahy, C. C., Godfrey, M. H., MacPherson, S. L., Possardt, E. E., Schroeder, B. A., Seminoff, J. A., Snover, M. L. Loggerhead sea turtle (Caretta caretta) 2009 status review under the US Endangered Species Act. In Report of the loggerhead biological review Team to the National Marine Fisheries Service. 222, 1–230 (2009).

  • Evans, K. M., Wortley, A. H. & Mann, D. G. An assessment of potential diatom ‘“barcode”’ genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158, 349–364 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hamsher, S. E., Evans, K. M., Mann, D. G., Poulíčková, A. & Saunders, G. W. Barcoding diatoms: Exploring alternatives to COI-5P. Protist 162, 405–422 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bowen, B. W. & Karl, S. A. Population genetics and phylogeography of sea turtles. Mol Ecol. 16, 4886–4907 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Shanker, K., Ramadevi, J., Choudhury, B. C., Singh, L. & Aggarwal, R. K. Phylogeography of olive ridley turtles (Lepidochelys olivacea) on the east coast of India: implications for conservation theory. Mol. Ecol. 13, 1899–1909 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Pinou, T. et al. Standardizing sea turtle epibiont sampling: Outcomes of the epibiont workshop at the 37th International Sea Turtle Symposium. Mar. Turt. Newsl. 157, 22–32 (2019).

    Google Scholar 

  • Ehrhert L., Ogren L. H. Studies in foraging habitats: capturing and handling turtles. In Research and management techniques for the conservation of sea turtles (eds. Eckert, K. L., Bjorndal, K. A., Abreu-Grobois, F. A., Donnelly, M.). IUCN/SSC Marine Turtle Specialist Group. Publication No. 4. (1999).

  • Guillard, R. R. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals 29–60 (Springer, 1975).

  • Theriot, E. C., Ashworth, M. P., Nakov, T., Ruck, E. & Jansen, R. K. Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Mol. Phylogenet. Evol. 89, 28–36 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Lobban, C. S., Ashworth, M. P., Calaor, J. J. & Theriot, E. C. Extreme diversity in fine-grained morphology reveals fourteen new species of conopeate Nitzschia (Bacillariophyta: Bacillariales). Phytotaxa. 401, 199–238 (2019).

    Google Scholar 

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 14, 1–14 (2014).

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Chernomor, O., Von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aberer, A. J., Kobert, K. & Stamatakis, A. ExaBayes: Massively parallel bayesian tree inference for the whole-genome Era. Mol. Biol. Evol. 31, 2553–2556 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar